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Abstract. The dynamics of a neural network which uses three-state neurons ( 1 , O  and -1 )  
is solved exactly in the limit of non-symmetric and highly dilute synapses. Recursion 
relations for the ‘activity’ (the fraction of non-zero neurons) and overlap of the network 
with a given pattern are derived which have three generic kinds of fixed points: a retrieval 
fixed point, a chaotic fixed point which corresponds to non-zero activity but no overlap, 
and a ‘zero’ fixed point where all the neurons go to the 0 state. As the non-retrieval fixed 
points both have activities different from the retrieval fixed point, one can easily tell whether 
a pattern has been recovered. An analysis of which fixed points occur as a function of the 
thresholds and the storage ratio of the system yields remarkably rich phase diagrams. 
Optimising the threshold level can be very important, especially when low-activity patterns 
are stored. A similar analysis can be applied to ‘biased’ networks using two-state ( 1 , O )  
neurons. Finally, we find that mixture states which have an overlap with two patterns can 
be stabilised by a threshold in the networks using three-state neurons. This property allows 
‘larger’ (higher activity) memories to be naturally constructed out of smaller ones. 

In this paper, we introduce a model of neural networks which uses three-state (1, 0, -1) 
neurons, and solve it in the dilute non-symmetric limit using the methods introduced 
for two-state (1, -1) neurons by Derrida, Gardner and Zippelius [ 13. The motivation 
for considering such a model is twofold. First, one can consider it as a first step 
towards the analysis of analogue neurons, which can be modelled in the limit S+m 
by S-state neurons where the S states correspond to ‘voltage levels’ between -1 and 
1. The move from two states to three already highlights many of the qualitative changes 
in moving from digital to analogue neurons. Second, one can think of the 0 (‘off’) 
neurons as a kind of background on top of which one can combine patterns of +1 
and -1 (‘on’) neurons which contain information. For real-world applications of 
neural networks such a distinction between background and pattern is often very 
natural. The model turns out to have many interesting features, especially a kind of 
‘threshold control’, which can best be understood by turning directly to its solution. 

The model consists of a system of N neurons Si which can take on the values 
0, * l ,  and whose interactions Ju depend on p stored patterns. The J0 are given by 

where [?( =0, * l )  is the value at neuron i of pattern g and the C,j are random 
independent parameters (independent of CJl) which take the value 1 with probability 
C /  N and 0 with probability 1 - C /  N.  C represents the mean number of synapses per 
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neuron. Each pattern has an ‘activity’ given by a, = ( l / N )  Z, 1671. Aside from this 
constraint on the total activity of each pattern, we will assume that 6: = +1 or -1 with 
equal probability. 

One can use parallel dynamics, when all spins are updated simultaneously at 
discrete time steps, or sequential dynamics, when spins are updated one at a time in 
a random order. The spins are updated according to the rule 

+ l  with probability exp[(h, - e ) /  T ] / Z  

-1 with probability exp[(-h, - O ) / T ] / Z  
0 with probability 1/Z 

where Z = exp[( hi - e ) /  TI + 1 + exp[ ( -h i  - e ) /  TI ;  hi = Z j  JVSj is the ‘local field’; 8 is 
a ‘threshold’; and T is the temperature. The zero-temperature response of a neuron 
is shown in figure 1: a neuron will point in the direction of its local field if the local 
field exceeds a threshold, otherwise it will have value 0. We have chosen the positive 
and negative thresholds to be equal for simplicity, but it is already clear that a simple 
generalisation to an S-state neuron with S - 1 possibly non-symmetric thresholds will 
give a discrete approximation to any analogue deterministic response function. In this 
paper, we restrict ourselves to three-state neurons, in order to understand fully what 
happens when we take this first step. 

Figure 1. The zero-temperature ‘response function’ of a three-state neuron. 

We consider first the case when the network has some macroscopic overlap with 
one of the patterns (say pattern 1) and no macroscopic overlap with any of the other 
patterns. We solve the model by deriving recursion relations for two ‘order parameters’: 
the ‘dynamic activity’ aD( t )  of the network defined by aD( t )  ( l / N )  Z i  ISi( t ) l  and the 
scaled overlap m l ( t )  ofthe network with pattern 1 defined by m,( t )  = ( l / N a , )  Z i  [ ; , S i ( r ) .  
We use this definition of the overlap, rather than other possible definitions which, for 
instance, might not be indifferent to the state of those neurons which should be ‘off’ 
in pattern 1, because this definition arises naturally in the solution of the model. 

Using the methods of [ l ]  (see [2-61 for other applications of this method) for 
parallel dynamics, we find that in the limit 1 << C << log N, these two order parameters 
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satisfy the recursion relations 

and 
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(3) 

where 

A = [a ,m,(  t )  - z(2aaiaD( t ) ) ” * ] /  T 

B = z(2aa;aD( t ) ) ” * /  T 

a;= 1 a ; / ( p - l )  
P P 2  

and a = p / C .  A slightly different set of recursion relations exists for sequential 
dynamics, which lead, in any case, to the same fixed points [l]. The equation for the 
overlap is derived by considering the neurons which overcome the threshold to point 
in the ‘right’ direction for pattern 1, and subtracting the neurons which actually 
overcome the threshold to point in the ‘wrong’ direction. The equation for the dynamic 
activity naturally separates into a part for the fraction a ,  of the neurons that should 
be ‘on’ in pattern 1, and are therefore affected by the overlap with that pattern, and 
the fraction 1 - a ,  of the neurons that should be ‘off’ in pattern 1. For both parts of 
this equation, we add the neurons which overcome the thresholds to point in either 
the positive or the negative direction. These equations give us a complete solution for 
the dynamics of this model when there is a macroscopic overlap with one pattern-that 
is, a trajectory in ( U , ,  m,) space parametrised by 8, a , ,  a a i  and T. It should also be 
mentioned that identical equations arise for a fully connected system if one makes the 
approximation of simply iterating the one-time-step parallel dynamics [7-91. At zero 
temperature and when the activity of all patterns is equal ( a ,  = up = a )  the equations 
reduce to 

and 

+ ( 1 - a )  1-erf [ (&)I 
where 

These equations are a generalisation of the equations derived for two-state (1, -1) 
neurons [ 13 which can be recovered by taking the limits of threshold 8 = 0 and pattern 
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activity a = 1. The main difference is the existence of the activity order parameter 
a,( t )  (which one should note enters into the ‘noise’ term m). 

These exact recursion relations have been studied by numerical iteration. It should 
be noted that the dynamic activity aD( t )  is generally not a constant during this iteration. 
We concentrate in the following on the fixed points of the iteration. At any given 
pattern activity a, threshold 8 and storage ratio a, we will find one of three generic 
kinds of fixed points. Which fixed point the system actually reaches will generally 
depend also on the initial values of the scaled overlap m , ( t )  and dynamic activity 
a,( t ) .  The different kinds of fixed points are: a ‘retrieval’ fixed point where the final 
overlap and activity are greater than zero (mT > 0, a; > 0-the star superscript indicates 
the value of the quantity at the fixed point); a ‘chaotic’ (or ‘paramagnetic’) fixed point 
where there is no overlap, but the final activity sustains itself anyway (mT =0,  ag>O) ;  
and a ‘zero’ fixed point where all the neurons turn off (mT = 0, a$  = 0). Of course, 
the ‘retrieval’ and ‘chaotic’ fixed points are only fixed points in the sense that m , ( t )  
and a,(t)  are fixed-which spins are up, down or off will continually change. The 
overall situation is best summarised in the form of a phase diagram which shows which 
fixed points coexist at a given threshold 8, storage ratio a and pattern activity a. In 
figures 2 ( a )  and 2 ( b ) ,  we draw such phase diagrams in the (8 ,  a) plane for pattern 
activities a = 1 and a =0.01. 

Consider first the case where a = 1, which means that the stored patterns consist 
only of S l s  and -Is, even though the neurons can in the course of the dynamics also 
take on the value 0. To understand this phase diagram better, imagine that we fix the 
storage ratio a at 0.5 and increase the threshold 8 (figure 3 ) .  At 8 = 0, all the neurons 
will be ‘on’ and we have a situation equivalent to a network that uses two-state (1, -1) 
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Figure 2. ( a )  The zero-temperature pattern activity a = 1 phase diagram in the (threshold 
0, storage ratio (I) plane. ‘R’ stands for the retrieval fixed point (fixed point overlap mT > 0, 
fixed-point dynamic activity a&>O), ‘C’ for the chaotic fixed point (m: =0,  a & > 0 )  and 
‘2’ for the zero fixed point (mT = 0, a& = 0). When more than one fixed point coexists in 
a region of the phase diagram, which one is actually reached depends on the initial 
conditions. The full curves represent first-order phase transitions. The broken curve 
represents a second-order phase transition. The dotted curve gives the f3 which optimises 
the fixed-point overlap mT at a given a. ( b )  The T =  0, a = 0.01 phase diagram in the 
(0, (I) plane. The abbreviations are as in ( a ) .  In region ( I ) ,  the retrieval fixed point dynamic 
activity a& is approximately equal to the pattern activity a. In region (II) ,  a 8  is nearly 
equal to 1. 
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Figure 3. Data for the case temperature 7 = 0, pattern activity a = 1, storage ratio a = 0.5. 
Plotted are the retrieval fixed-point overlap mT, the retrieval fixed point activity a$(R), 
the chaotic fixed point activity a;*(C),  the minimal initial activity am,"( m ,  = 0) to go to the 
chaotic fixed point when the overlap m, = 0, and the minimal initial overlap " , , (a ,  = 1) 
to go to the retrieval fixed point when the initial activity a,(init) = 1. 

neurons. Because cy is so near to the critical capacity a , = 2 / ~ ,  where there is a 
transition to the chaotic phase, the fixed point overlap rnr is quite low. As we increase 
the threshold 8, the fixed point retrieval is actually improved, as the threshold tends 
to turn off those neurons which have the lowest local field, which are the most important 
ones in causing errors. We find that the fixed point overlap is optimised at 8-0.17. 
Note that we can calculate explicitly the 'basin of attraction' (or equivalently the 
minimal initial overlap given some initial activity). We see in figure 3 that the minimal 
initial overlap is extremely low in the region around 8 = 0.17 which means that the 
basin of attraction is very large. If, however, the initial overlap is equal to zero, then 
the network goes instead to the chaotic fixed point (if the initial activity is large) or 
the zero fixed point (if the initial activity is small). Note that the fixed-point activity 
is always different for the chaotic fixed point compared with the retrieval fixed point. 
This is because in the chaotic fixed point there is no coherent piece from pattern 1 
sustaining the activity. For a = 0.5, beyond the point 0 = 0.41, the chaotic fixed point 
cannot sustain itself and disappears through a first-order transition. In this region of 
the phase diagram, it is particularly easy to tell whether or not a pattern has been 
recovered-if no pattern is recovered, the network simply turns off. The retrieval fixed 
point itself vanishes through a first-order transition at 8 = 0.48. All the full curves in 
figure 2( a )  indicate first-order phase transitions and the broken curve indicates a 
second-order transition. The dotted curve indicates the optimal threshold at a given 
storage ratio cy. 

Next we consider the phase diagram when the pattern activity a =0.01, shown in 
figure 2(b). We see immediately from this figure that for small patterns, it is very 
important to optimise the threshold (which, to a first approximation, scales with the 
size of the stored patterns). At the optimal threshold of e / a  =0.65, the network has 
a capacity of ac= 4.0, considerably higher than it  did for a = 1. Note also that the 
transition at the optimal threshold is now first order, which means that the fixed-point 
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overlap is quite high as long as one is in the retrieval phase. For example, for 8 = 0.65, 
the fixed point overlap mT = 0.89 even at a storage ratio of a = 3.9. 

Note that the region of the phase diagram where the three fixed points coexist is 
now divided into two subregions which are separated by a first-order phase transition 
(figure 2 ( b ) ) .  In subregion I ,  which includes the vicinity of the optimal threshold, the 
fixed-point activity a*, of the retrieval fixed point is of the order of the pattern activity 
a. In subregion 11, which includes the area where the threshold is zero, a*, is O(1). 
The second-order transition above subregion I 1  is the remnant of the second-order 
transition found for networks of two-state (1, -1) neurons [l]. These technical points 
concerning subregion I1 are not really very important to the functioning of the system 
as an associative memory. 

Very similar phase diagrams exist for ‘biased’ dilute non-symmetric neural network 
models which use two-state (1,O) neuronsf. Tsodyks [6] has solved such a model 
which uses the altered Hebbian prescription 

CJ, 
JJ, = c c ( t? - a - a 1 

and found zero-temperature recursion relations which can be rewritten as 
Ir 

where the ‘dynamic activity’ a,,(?) is now defined by a,,( t )  = (1/N) Xz S , ( t ) ,  the activity 
of the patterns is defined by a, = (1/ N )  XI [f and all a, = a, and the scaled overlap 
is defined by m , ( r )  = ( l / N a )  I;, S,(  t ) ( [ :  - a ) .  Tsodyks concentrated his analysis on  the 
limit a + 0. In that limit, and  if we restrict ourselves to the region around the optimal 
threshold where we can assume that 

the sets of equations ( 5 ) ,  ( 6 )  and (8), (9) become identical. Thus, the models have 
identical behaviour in the limit of small pattern activity and  nearly optimal thresholds. 
The intuitive reason for the similarity of the two models in this limit and  region is that 
nearly all the ‘errors’ for the three-state model will consist of neurons having value 0 
when they should be + l  or -1, rather than the more serious error of a neuron having 
value $1  when it should be -1 or vice versa. Thus the three-state model behaves very 
much like a two-state (1,O) model, albeit with a considerably more convenient and  
efficient storage prescription. 

To be more specific, the three-state model has the following advantages over the 
two-state model. First, it stores about twice as much information because the critical 
capacity ac is nearly the same, but an  ‘on’ neuron can now be 1 or -1, instead of 
always 1. Secondly, the storage prescription is simpler, and it is much easier to 
implement with digital synapses. Finally, as we will see below, it is easy to combine 
small patterns into bigger ones using the three-state neurons. Using two-state neurons, 
bigger patterns would ultimately consist entirely of 1 neurons, with no information 
stored at all. 

+ I thank Werner Krauth for pointing out to me that this might be true. 
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Nevertheless, as a consequence of the mathematical equivalence of the two models, 
we can read off some interesting results from reference [6]. In particular. we find that 
the optimal threshold and the optimal capacity at that threshold have the following 
asymptotic dependence on the pattern activity a as a + 0: 

Comparing the two models when the pattern activity a = 1 for the three-state model 
and a =; for the two-state model, so that both models store one bit per neuron, we 
find by solving the recursion relations given above that the three-state model again 
can store about twice as much information as the two-state model; the difference now 
being that cyc is half as large for the two-state model. In fact we find that the phase 
diagrams are nearly identical if we make the replacements 2a"' and 0 ( 3 3 + 2 8 ( 2 3 ,  
where the superscripts denote the model using three-state or two-state neurons respec- 
tively. Finally, returning to the limit a << 1 ,  we find that the full phase diagram for the 
two-state model (with for example a = 0.01) is very similar to the phase diagram for 
the three-state model shown in figure 2(b),  the only difference being in the lower 
left-hand corner, where the second-order transition between region I1 and the chaotic 
phase occurs at a storage ratio (Y of around 1 1 7  for the two-state model, and 2/1r for 
the three-state model. These phase diagrams put in more complete perspective the 
observation made by Tsodyks [6] that the transition for a<< 1 in the two-state model 
is first order, which is strictly speaking only true in the region around the optimal 
threshold. 

Finally, we consider the case of a configuration which has macroscopic over- 
laps m l ( t )  and m z ( t )  on two patterns ( 1  and 2) and zero overlap with the other 
p - 2 patterns. We assume that the two patterns have an  overlap Q and an  'activity 
overlap' R : 

We find, in the limit 1 << C << log N (and specialising immediately to the case T = O), that 

m , ( r ) - m 2 ( r ) + . r 0 / a ,  a , - R  
D 

+R-Qer f (  4 D ) +yj-er f  

( mz( t + 1 )  is obtained by making the substitutions rn, - m 2 ,  a, - u2)  and 

+ 
2 
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where D = J m  and a’, = Z p z 3  a i / (  p - 2). These formulae, although they are 
rather long, are not too difficult to derive. One needs to consider a neuron at site i 
and note the following probabilities: 

6; = sf # 0 with probability ( R  + Q ) / 2  

6 ;  = -6fzo with probability ( R  - Q)/2  

s: ZO; sf=o with probability U ,  - R  

6; = o ;  ( f # O  with probability a2-R 

6 ;  = sf = 0 with probability 1 + R - a ,  - 0 2 ,  

The corresponding terms in the equations then follow by calculations which are very 
similar to those necessary when one considers an overlap with a single pattern. These 
equations give us trajectories in (aD( t ) ,  m , (  t ) ,  m2( t ) )  space parametrised by 8, up,  a , ,  
a * ,  Q, a and R. 

Obviously, this is too large a parameter space to explore thoroughly, but we can 
make some general observations. In particular, it should be noted that using a threshold 
8>0, we can stabilise states which are mixtures of two patterns. In previous work 
with two-state (1, -1) models, it was found that for fully connected networks [IO, 111, 
feed-forward networks [ 121, and non-symmetric diluted networks [ 11, mixture states 
of two uncorrelated patterns ( Q  = 0) were always unstable. Here we find that if, for 
example, a,  = a, = up = R = 1, and Q = 0, then the mixture state m: = 0.5, mf = 0.5, 
a;  = 0.5 is stable for low a and 8 > 0. The reason is that the threshold simply turns 
off all neurons which contribute to the two patterns in opposite directions, and leaves 
on all the other neurons. This general behaviour is also true for mixture states of two 
smaller patterns. In that case, one generally finds that the few neurons that contribute 
to the two patterns in opposite directions (6; = -sf # 0) are turned off by the threshold, 
leaving on those neurons which contribute to only one of the patterns or neurons 
which contribute to the two patterns in the same direction. Thus, we generally find 
that mixture states of two small patterns are stable with fixed-point-scaled overlaps 
for the two patterns both nearly equal to 1. A simple extension of these results shows 
that this is also true for mixture states of more than two patterns. 

The usual philosophy about mixture states is that they are something of a nuisance. 
This three-state model leads us to consider instead the idea that mixture states might 
in fact be quite valuable, in that we can combine smaller memories into larger ones, 
thus seeing ‘words’ where before we had only seen ‘letters’. One might imagine that 
if two small patterns were consistently recovered concurrently, synapses might even- 
tually be strengthened between the neurons forming the patterns, thus creating a larger 
pattern. If the mixture state had not been stable in the first place, this could not have 
happened. 

In this paper, we have introduced a neural network that uses three-state (1,0, -1) 
neurons and have solved for its dynamics. The main results of this paper are the phase 
diagrams of figure 2. Similar phase diagrams exist for models using two-state (1,O) 
neurons but have not, perhaps, been fully appreciated. The three-state model stores 
twice as much information as the two-state model and uses a storage rule which is 
much more easily implemented using digital synapses. These phase diagrams make 
obvious the significance of the threshold, which can be used to optimise retrieval, ‘zero 
out’ the network, or search for different-sized patterns (the optimal threshold scales 
with the pattern size). Another important result is that for the three-state model, 
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mixture states of two patterns are inherently stable, allowing the network to ultimately 
form larger patterns out of smaller ones. Some extensions of the analysis are evident. 
First, one can repeat the analysis using the replica [ 113 or cavity method [ 131 to solve 
for the case of a fully connected network (see also [14]). The main difference in this 
case will be the existence of order parameters which correspond to the freezing of the 
system. We can expect that the ‘chaotic’ phase will be replaced in this case by a 
spin-glass phase. Secondly, one can consider S-state neurons where S becomes very 
large. These neurons are an  excellent discrete approximation to deterministic analogue 
neurons. Using this formalism, some long-standing questions about the advantages of 
analogue neurons can be addressed. 

Acknowledgments 

I thank P W Anderson, Ido Kanter, Werner Krauth and Marc MCzard for helpful 
discussions. I am grateful to the physicists at the Laboratoire de  Physique de  I’Ecole 
Normale Supirieure for their warm hospitality. I acknowledge the financial support 
of AT&T Bell Laboratories. 

Note Added. C Meunier, D Hansel and A Verga [I41 independently considered neural networks using 
three-state neurons and performed numerical simulations on fully connected networks. Their results are in 
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